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ESTIMATION OF SHOCK LAYER THICKNESS AND PRESSURE
DISTRIBUTION ON A DELTA WING-BODY SPACE SHUTTLE ORBITER

By

George E. Kaattari
Ames Research -Center

SUMMARY

Methods are presented for calculation of both the shock inclination angle
and the surface pressure coefficient in the vertical plane of symmetry of
bodies at angle of attack The methods are applicable over an angle of
attack range from 0° to a maximum angle. that depends on the body slenderness
ratio; for very slender bodies, this maximum angle of attack approaches 90°.
‘The methods apply to configurations of elliptical cross section and of
rectangular cross section with rounded corners.

INTRODUCTION

There is much interest currently in pressures and shock layer thick-
nesses generated on bodies at large angles of attack during atmosphere
entry. Theoretical solutions, refs. 1 and 2, have been developed for
pressure distributions and shock layer thicknesses for symmetrical profiles
at zero angle of attack. More recent works, typically refs. 3 and 4, have
considered the nonsymmetric flow cases of bodies at angle of attack. These
are all numerical solutions of exact equations and, except in ref. 3,
require that the body be a simple analytic shape. Approximate pressure
distributions have been computed for more general (nonanalytic) shapes such
as wing-body combinations by tangent wedge and tangent circular cone methods
and by Newtonian theory.

The present method for estimating the shock locations and surface
pressure coefficients in the vertical plane of symmetry is developed by
analysis of a simple cone at angle of attack. The method may be extended,
however, to the prediction of symmetry plane pressures and shock layer thick-
nesses of configurations with arbitrarily varying (and expanding) cross
sections. This extension to the method is accomplished by approximation of
the body with a tandem series of cone frustums of appropriate cross section.
In effect, this then is a tangent cone method but differs from the standard
technique in that the tangent cone can be made to closely coincide with the
entire windward local body periphery in the spanwise direction. This require-
ment is not possible with a circular cone which can be tangent only to a
point on the body and thus cannot give a realistic shock layer thickness.

The present method, moreover, is applicable to a larger angle-of-attack range
than is the method of the tangent circular cone.
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semiminor axis of an ellipse
semimajor axis of an ellipse or semispan of a slab section
surface pressure coefficient

pressure coefficient behind oblique shock inclined 6
degrees with respect to free-stream direction

parameter defined by equation (3)

length of cone

free-stream Mach number',

virtual shock element (sketch (a))

element of acFual shock

surface pressure on cone plane of symmetry

free-stream pressure

pressure behind oblique shock inclined 6 degrees to
free-stream direction

free-stream dynamic pressure

corner radius of slab section

length along body surface from nose apex (figure 3)

free-stream velocity

average velocity normal to shock in shock layer
axis tangent to oblique shock (sketch (a))
cone base reference length in X-direction

axis normal to oblique shock (sketch (a))



o angle of attack

8 angle between shock and cone surface

Y specific heat ratio of gas

Ao shock standoff distance for yawed cylinders

As shock standoff distance on arbitrary body at location 8

AP pressure increment between shock and yawed cylinderlsurface

in plane of symmetry

Ax length increment of transformed body (sketch (a))
xey semiapex angle of cone in minor axis plane

€, semiapex angle of cone in major axis plane

8 : inclination angle of shock to free-stream direction
o free-stream gas density

gas density behind oblique shock inclined 6 degrees to
free-stream direction

ANALYSIS

The analysis will be developed in two parts. The first part will
discuss a semi-empirical equation used to calculate the pressure coef-
ficient in the vertical plane of symmetry on a conical body of arbitrary
cross section at angle of attack. The equation is a function of the
free-stream flow properties, the shock inclination angle, 6, and the
differential angle, B, between the shock trace and the body surface in
the vertical plane of symmetry. The second part presents a means of
calculating the angle, 8, as a function of angle of attack, a, for conical
bodies having two types of body cross-section.
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Pressure Coefficient

The pressure coefficient for a perfect gas behind an oblique shock
at angle © 1is

1
C —(sin%6 - =)
q Py (r+D) Mo e (D

When the oblique shock is associated with a wedge (two-dimensional flow), the

3

P
angle between the wedge and shock is B = tan 1ﬁ59tan6), where 52 is

9 0
the reciprocal shock density ratio across the oblique shock., The pressure

coefficient on the wedge is identical to Cp (equation (1)).
)

If the shock is associated with an infinitely long (e = 0) yawed cylinder,
the shock trace is parallel to the cylinder and 8 = 0.” The pressure
coefficient on the cylinder is then due to the stagnation pressure cor-
responding to the normal Mach number, Mosine . The increase in pressure

coefficient from the shock to the cylinder surface may be determined with
the aid of shock tables. For normal Mach numbers, greater than 2.5, this
pressure coefficient increase is given to a good approximation (within 6%)
by~

p
A —2sin?6 = I;%Sinze + -
& Py Y (Y+1)Mg B 23

It is assumed that the variation in the surface pressure coefficient
between the limiting cases of a wedge and a yawed cylinder is a linear
function of the parameter, k, defined below

\

tanB

p
T (3

8

k =



The "generalized" pressure coefficient is then

C=C +22 () . . W
P P
qO

6]

Equations (1), (2), and (3) when combined with equation (4) results in-

2

C = EY:i; sin%@ -~ —=— _ sinfcosftanB )
L (r+D)M2 N G

Shock and Body Angle Relationships

Equation (5) developed in the preceding section presumes a known
relationship between the angles, 6 and B. This relationship is not
generally available from existing theories for conical bodies of
arbitrary cross section at angle of attack. This section, therefore,
describes a method by which the shock and body angle relationships may
be determined by simple calculations involving two-dimensional shock
theory.
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Sketch (a) depicts a conical body with its upper surface element in
the vertical plane of symmetry defining an angle, - 8 , with respect to the
shock trace, OX, which is ipclined at the angle, 8 , with respect to the
free stream-direction. If the horizontal component of velocity, V000869

were neglected, the shock stand-off distance, AO, from the base of the
body at location X toa "yirtual" shock location, element m, is

established by two-dimensional shock applied to the local body cross-
section in the normal flow field. When the horizontal component of
velocity is considered, the stand-off distance, AO, is maintained with

respect to an extension of the body surface element but is translated a
distance, Ax, so that the virtual shock element, m, appears at the real
location, n, on the shock trace, OX, this position being occupied with

respect to a transformed (elongated) body. Since the value, AO, is

established, the angle, B , may be determined using the length of the
transformed body, X + Ax, as follows:

The Y-components of the stream velocity in the shock layer varies

) p
from the value immediately behind the shock,~69 Vosine, to the value
5]

approaching the body surface, Vocosetans. The average velocity

- P
V& = %Voéaesine 4+ cosOtanf). The X-component of velocity is Vocose.
6 ’ ‘ '

Therefore, a stream particle commencing from the shock at location X
is carried the horizontal distance, Ax, with velocity, Vocose, in the

time interval required for it to approach the transformed body at

Y-distance, AO, with the average velocity, Vy’ Thus~

Ao v, 1 p0
Tx = Vcess = 20, tam0 + tand) .

N
© ° . ® o e ° ° e ° ° ® ® @ e (6,}

[en)

- By inspection of sketch (a)

A -~ x tanf = Ax tang
o o
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Substitutuon of equation (7) into equation (6) give -

A

p p
tanB(tanB + — tan6) + —E(tanB -—tans) = 0
p X 0 I €-)
6 o 8 ‘
X, is related to the cone geometry as follows:
1 Xo
= , b = ltane , a = \tanec
COSE cosB z
y
1 tanezcosgysecB |
X b O )
o

Substitution of the above value for X0 into equation (8) gives the final
result - . N

‘ G A tane cose secf o
tanB(tanf + —tan®) + (tanf - — tang) = 0
Py b Py

N @ 10))

Equation (10) give B as a function of 6 , however, the angle, B , as a
function of angle of attack, a, is readily found through the relationship -
o=06-8 - Ey (sketch .(a)).

For small values of B (secf = 1), equation (10) can be formed as a
quadratic equation and an approximate solution readily obtained. The
exact solution in chart form is presented in figure 1, wherein B8

is plotted as a function of (A /b)tane cose for various parameter values
o z v

0 v
—p—e tan®, The required value, Ao/b, is the shock solution for two-
6

dimensional cylinders and is a function of the shock density ratio

and the body cross-section. Solutions for various elliptic cross sections

and slab sections with round corners are given in figure 2. These solutions

are from an unpublished method which is a two-dimensional extension to the
axisymmetric solutions of reference 7. The discontinuities in the solutions

are due to arbitrary step changes in the value of the gas specific-heat ratio, v,
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at pe/po = 6 and 11, The effect of Yy may be estimated by interpolation

if some "real gas" y can be specified.

EXAMPLE APPLICATION

The following numerical example illustrates the calculative procedure
and use of the charts herein included to determine the shock angle and
pressure coefficient solutions for a typical conical body at an angle
of attack in air (y = 1l.4) at Mach number 5. ‘

o

Given a/b = 1/3, e, = 157, (ey = 5.100), and MO = 5; determine the

angle of attack and pressure coefficient when the shock is inclined (6 = 607)

p
to the free stream. The shock density ratio, 62-, across the oblique
' - 8
shock with "y = 1.4 is first determined -

p
o (y=-1) 2 A 2
—_= + = + = ,211
Py (v+1) (Y+1)M§sin26 2.4 2.4%25x%.750
The reciprocal value,<6— = 4,74, TFigure 2(a) gives the value AO/b = ,692
R .
o
at 5= 4.74 for an elliptic section with a/b = 1/3.
o ' :

Quantities required in figure 1 are now evaluated. The abscissa

value (Ao/b) tanszcosey = .692x.268x.996 = .185. The parameter,

P
—2 tanp = .211x1.732 = ,366. The above wvalues intersect on the curves of
6

figure 2(a) at the ordinate value, = 5.85°. The angle of attack,
a=0-8-¢c = 60° - 5.85° - 5.10° = 49.05°

[}



-9-

The pressure coefficient, equation (5) is evaluated -

4.4 2

C = —x .750 ~ 3425 .500%x.866x,1025 = 1.297

Note that a specific angle~of-attack value cannot be selected
a priori. Calculations with several values of 6 can be made quickly,
however, and curves of Cp and B constructed as functions of angle of

attack. The above procedure also applies to round corner slab sections
where r, takes the role of "a" (figure 2(b)).

EXTENSION OF THE METHOD

A delta wing~body configuration is depicted by solid outline in
figure 3. The dashed lines represent outlines of a series of tandem cone
frustums with which the configuration shape is approximated. The cone
elements are constructed tangent to the bottom surface at the vertical
plane of symmetry and are also made tangent to the planform ocutline of
the configuration as indicated. A typical cross section meeting these
requirements is shown. Cross sections varying from a circle to ellipses
of increasing ellipticity and several round-corner slab sections were
utilized in the construction of figure 3. Thus, the actual configuration
is approximated by a series of cone frustums of step-wise varying cross
section, apex angle, and angle of attack. The accuracy of the approximation
increases with the number of frustums used.

Calculations of pressures and shock angles are then made for the
individual cones in the manner of the above example calculation. The shock
layer thickness is then determined by integration of the local shock angles
(appropriate to each cone) plotted as a function of body surface length.

S

__SdA .
As=£863—£ oL A A ¢ 53

Equation (11) may be integrated either by graphical or tabular methods.
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COMPARTSON BETWEEN EXPERIMENTAL
AND THEORETICAL RESULTS

A comparison between experimental and predicted centerline shock
layer thickness for a delta wing-body configuration at Mo = 7.4 is in-

cluded in figure 3. Experimental and predicted values are in good agree-
ment.

Note that the shock layer thickness has the same value at the angles
of attack 15° and 30°. Comparisons of experimental and predicted results
for elliptic cones are presented in figure 4. A wide range in cone
geometry and Mach number (3 < Mo < 10) is represented. The useful angle

of attack range of the method is restr%cted in that when the centerline
shock trace incline approaches 6 = 90 the angle B8 approaches the

A
approximate value ngz' The limiting angle of attack is then
o 90° = Egez -ey. Thus, o reaches the highest value for slender

cones (small €, and sy) and, for cones of a given slenderness, has higher

values with increasing Mach number (decreasing Ao/b). Agreement between

experimental and predicted values is generally within 107 and is particularly
satisfactory at the higher Mach numbers. The data at Mach numbers, 2.94,
3.87, and 4.78 are previously unpublished results of tests in the Ames

1- by 3-foot wind tunnel.

Figure 5 presents a comparison between experimental and predicted
centerline pressure distributions for the delta wing-body configuration shown
in figure 3. Agreement is satisfactory at angles of attack up to 307, At
the angle of attack of 40° a discrepancy between experimental and predicted
pressures occurs over a portion of the body length, however, the predicted
values given by the present method are in better accord with experiment
than are the indicated results of modified Newtonian theory.

A comparison between experimental and predicted centerline pressures
for cones is presentéd in figure 6 in the form of a correlation curve. The
range of angle of attack, Mach number, and configuration cross sections are
noted on the figure. Experimental and predicted values correlate within
the limits of about +2 percent.
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- CONCLUDING REMARKS

Simple methods were developed. for prediction of inclination of a
shock with respect to the windward trace on a conical surface in the
vertical plane of symmetry and for estimation of pressure coefficient
on this body trace.

Predicted values were compared with experiment for air flows in the
Mach number range 3 to 10 and the angle of attack range of 0° to about
70° for cones of a wide range in geometry. The methods were extended to
the prediction of vertical symmetry plane shock layer thicknesses and
body surface pressures of configurations with arbitrarily changing cross-
sections with body length by the use of a tandem series of locally conical
elements to approximate the body shape. This, in effect, is a refined
tangent cone procedure.

The applicability of the methods have been demonstrated by comparison
with test results from low enthalpy air flows. The suitability of the
method for real gas flows is believed valid also since the real gas
effect enters primarily through the density ratio across the shock.
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